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Abstract: Climate change is a shift in nature yet a devastating phenomenon, mainly caused by human
activities, sometimes with the intent to generate usable energy required in humankind’s daily life.
Addressing this alarming issue requires an urge for energy consumption evaluation. Predicting
energy consumption is essential for determining what factors affect a site’s energy usage and in turn,
making actionable suggestions to reduce wasteful energy consumption. Recently, a rising number
of researchers have applied machine learning in various fields, such as wind turbine performance
prediction, energy consumption prediction, thermal behavior analysis, and more. In this research
study, using data publicly made available by the Women in Data Science (WiDS) Datathon 2022
(contains data on building characteristics and information collected by sensors), after appropriate data
preparation, we experimented four main machine learning methods (random forest (RF), gradient
boost decision tree (GBDT), support vector regressor (SVR), and decision tree for regression (DT)).
The most performant model was selected using evaluation metrics: root mean square error (RMSE)
and mean absolute error (MAE). The reported results proved the robustness of the proposed concept
in capturing the insight and hidden patterns in the dataset, and effectively predicting the energy
usage of buildings.

Keywords: sensor network; energy usage; artificial intelligence; machine learning

1. Introduction

The term “climate change” refers to the long-term shift in weather patterns linked to
the continuous increase in atmospheric greenhouse gases [1] (CO2, water vapor, nitrous
oxide, and methane). This problem must be addressed given its negative impact on human
and animal food, biomass, and crop production [2–4]. The combustion of fossil fuels
(oil, gas, and coal) by industries to meet people’s everyday energy needs contributes
to environmental shifts. With the hope of mitigating climate change, researchers have
conducted many studies using ground, air, and space observation [5] and computational
models [6].

According to a World Economic Forum (WEF) analysis from February 2021, the
energy requirements of buildings account for 33% of greenhouse gas emissions and 40%
of global energy consumption [7]. The building sector has the potential to reduce its
carbon footprint via the adoption of more energy-efficient practices and the installation of
cutting-edge mechanical and electrical equipment [8]. Intelligent energy management in
the building sector is often accomplished via sensor devices that gather constant quantities
of information on the site’s activities, allowing data-driven energy usage analysis and
consequently, energy consumption control.

Previous studies have shown the usability of sensor devices in the building sectors,
among which [9,10] Md. Motaharul Islam et al. presented a novel approach to structural
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health monitoring by sensor payload compression using arithmetic algorithms. The pro-
posed model succeeded in a lossless data transfer paradigm and was comparable to the
state-of-the-art architecture using the Huffman algorithm. M. Frei et al. [11] proposed an
easy-to-implement open-source wireless sensor network (WSN) to help researchers in all
fields collect data for building performance estimation. Sensor networks could therefore
collect large-scale, continuous, and real-time data over time [12].

Throughout the years, with the ever-increasing amounts of data, computational mod-
els (machine learning-based solutions) have proven effective in addressing a diverse range
of practical issues in public healthcare [13–15], bioinformatics [16], natural language pro-
cessing (NLP) [17], and many others.

The advent of computational models combined with the abundance of data have led
to the development of effective control mechanisms to match energy supply to demand a
primary goal of several scientists [18], specifically systems aimed towards energy usage
optimization [19].

With the goal of optimizing energy usage, advances in machine learning (ML) algo-
rithms have allowed not only the ability to perform a large set of experiments, but also
to obtain high-performant models. Several researchers have studied energy consumption
prediction in various areas. The researchers in [20] developed a cross-layer solution for
energy optimization that could reduce energy consumption needed by 25% in printing
operations [21]. Wang et al. compared various ML (support vector regression–SVR, ra-
dial basis functional neural network, general regression neural network, and propagation
neural network) models for predicting hourly energy consumption in residential areas,
with SVR outperforming all the other models. Likewise, the authors of [22] compared
artificial neural networks (ANN), the grey model, and regression models for annual energy
consumption in urban residential buildings located in urban areas. Chen Fan et al. [23]
investigated the advantages of recurrent neural network (RNN)-based strategies. They de-
signed various prediction strategies using a direct, recursive, multi-input, and multi-output
approach for short-term building energy prediction. The authors of [24,25] researched
how to reduce energy consumption in buildings’ heating, ventilation, and air conditioning
(HVAC) systems. Ahmad MWMM et al. [24] compared ANN to random forest (RF) in
terms of the standard evaluation metrics (MAPE, RMSE, mean absolute deviation (MAD),
coefficient of variation (CV), mean absolute percent deviation (MAPD)) for regression tasks
and concluded that regardless of the high performance reported by the RF, ANN was
superior at predicting hourly HVAC electricity usage. Similarly, [25] applied the four ML
(Gaussian process regression model, ANN, Gaussian mixture regression model (GMR), and
change-point regression model) methods and compared their performance results. Thus,
they concluded that the GMR outperformed the other algorithms due to its low RMSE rate.
The ANN was proven to capture non-linear relationships among data attributes during
their experimentations, but performed the worse among the ML methods employed.

The current study’s goals are: to model an energy utility prediction procedure utilizing
ML algorithms based on building characteristics and weather data collected via sensors;
to highlight the importance of data preprocessing in prediction tasks; and to provide a
prediction module that could be used to construct an assistive application to ease site
management in energy saving.

The remainder of this research work is organized as follows: Section 2 presents
the proposed procedure for predicting site energy utilization, including data generation,
preprocessing, and ML methods overviews; Section 3 describes the experimentation in
which we presented the workstation used to conduct our experiments, described the dataset
used, mentioned the hyperparameters setup, and presented the results; Section 4 discusses
the paper and mentions the future work direction; and finally, Section 5 concludes the paper.

2. Proposed Procedure

This study aims to show the application of ML in sensor-related fields, specifically
in predicting site energy utilization from sensor-collected data and other parameters as
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described in the dataset section. Figure 1 is an illustration of the overall conceptual model.
The proposed procedure can roughly be subdivided into three stages. The first is the data
collection stage. The collected data is then preprocessed to clean and remove unnecessary
features, and then the data is processed to produce appropriate features for the next stage.
Finally, the prediction stage involves investigating various ML algorithms and tuning their
hyperparameters to obtain the performant models.
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Figure 1. Conceptual representation of the proposed procedure.

2.1. Dataset Collection

The dataset used in this study was obtained from Kaggle, which was made available
by the Women in Data Science (WiDS) Datathon 2022 [26]. The WiDS provided data that
can be divided into three main groups: first, the building’s characteristics (consisting of
features such as floor area, facility type, year of building’s construction, and more; see
“supplementary material Table S1”); second, the on-site sensors gathered meteorological
data from the various buildings’ locations (including yearly average temperature, annual
total precipitation, energy start rating, and more; see “supplementary material Table S1”);
and finally, the building energy utility (including energy start rating and site energy use)
was gathered over seven years. We applied a set of ML algorithms to predict the energy
consumption of diverse buildings. Overall, we utilized 75,757 samples: 60,606 for training
and validation, and 15,151 for testing.

2.2. Preprocessing

In this stage, we cleaned our data and only kept the necessary features deemed
important for our prediction stage. The first operation performed was to remove the outliers
due to the high skewness level in relation to the output label feature (site_eui), as shown
in Figure 2. Following that, we addressed the issue of empty cells by removing features
with 50% or more of empty cells. On the other hand, features with fewer miss values were
filled with the most occurring value column-wise. Then, we encoded the categorical feature
into the numerical data necessary for the proper execution of the models. This encoding
process was performed using a one-hot encoding technique [27,28]. Moreover, we applied
two feature selection techniques: the Pearson correlation and the analysis of variance. The
Pearson correlation method selects features based on coefficient values between −1 and 1.
Because of their linear dependence, highly correlated features have the same effect on the
target value. As a result, if two features are highly correlated, one must be dropped. When
determining if there is a statistically significant variation across features in a dataset, the
F-test is used by the ANOVA feature selection method. The obtained value can be used to
define the impact of one or more independent features on the target value (in our case, “site
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energy utility”). The more equal the variance between a set of features, the less weight the
feature has on predicting the outcome. As a result, less critical features are discarded while
the important ones are retained in our data to avoid the consequence of dimensionality and
select the most valuable set of attributes to build the best models. Finally, we performed
normalization on the data; this is a trivial step since it allowed us to generalize all the
attributes and rescale their values between a range of 0 to 1 [29], making those values closer
to one another and allowing the ML algorithm to learn quickly. In our case, we employed
the min-max algorithm, which converts the lowest feature value to 0 and the highest value
to 1 while preserving the relationships among the original data values. Equation (1) shows
how a new normalized value is obtained using the min-max.

Xnorm =
X−min(x)

max(x)−min(x)
(1)

where Xnorm represents the normalized values (converted into data points in the range of
0 to 1); min(x), the min value in the input feature, X; max(x), the maximum value of the
input attribute, X; and X, the input attribute to be normalized.
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2.3. Overview of the Used Machine Learning Algorithms

This section reviews the different ML algorithms used to predict the building’s energy
usage using WiDS-provided data. Among the ML algorithms used, we can enumerate the
random forest, decision tree, support vector regressor, and gradient boost decision tree.

• Random forest (RF): is a versatile ML algorithm that can be used for both regression
and classification problems [30]. It is an ensemble ML algorithm consisting of multiple
decision trees, adding more randomness as the forest grows. When compared to other
ML methods, RF has additional advantages such as providing an estimation of the
input variables’ importance, its lower sensitivity to noise compared, handling missing
values, avoiding overfitting, etc., allowing it to achieve higher performances. Because
our research was conducted on a dataset with continuous output labels, we used
regression [31] rather than classification. The RF operates by constructing a collection
of DTs from various combinations of samples and taking the average results obtained
by those trees.

• Gradient boost decision tree (GBDT) regressor: is an ensemble learning technique for
regression problems that consists of weak DT learners to produce the final output.
GBDT algorithms considerably minimize the loss function and optimize the predic-
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tions by implementing a parallel learning approach via a gradient boost. GBDT also
prevents overfitting and low learning time [32].

• Decision tree (DT) regressor: is a decision support mechanism with a tree-like structure
representing the input features as nodes with test outcomes represented by branches.
Using the dataset attributes and following the entropy concept, the DT is built in a top-
down fashion following the recursive partitioning methodology, called CART [33], The
root node represents the most critical predictor. The DT node homogeneity, branches’
construction, and leaf node values are obtained from Equations (2) and (3), respectively.

SD =

√
∑n

i (xi − xi)
2

n
(2)

CV =
SD
x
× 100% (3)

x =
∑n

i xi

n

• Support vector regressor (SVR): is a parametric regression algorithm that uses a
kernel function to manipulate and fit the data samples so that in a high-dimension
space, a non-linear decision surface can be transformed into a linear one described
by Equation (4). SVR’s objective is to find the optimal hyperplane that minimizes
the absolute error, Lε, to that of the maximum allowed threshold error range (named
epsilon) as shown in Equation (5), where ‖w‖2 is the Euclidean norm of the vector, w.

g(x) = w·ϕ(x) + b (4)

min
1
2
‖w‖2 (5)

Lε(y, g(x)) =

{
0, i f |g(x)− y| ≤ ε

|g(x)− y| − ε, otherwise

Some error points outside the epsilon error boundary could be allowed by introducing
the slack variable, ξ. A new objective function can be obtained by adding the slack variable
deviation to the maximum threshold error, as shown in Equation (6).

min
1
2
‖w‖2 + C ∑m

j=1

∣∣ξ j
∣∣

Lε(y, g(x)) =

{
0, i f |g(x)− y| ≤ ε +

∣∣ξ j
∣∣

|g(x)− y| −
(
ε +

∣∣ξ j
∣∣), otherwise

(6)

where C is a constant used for the regularization by controlling the penalty imposed on the
set of points lying outside of the epsilon error boundary.

2.4. Methods’ Accuracy

Two evaluation metrics are used during this study to ensure the reliability of the
predicted results; among others, we have root mean square error (RMSE) and mean absolute
error (MAE).

• RMSE: is used to express the root mean squared difference between the observed
actual values and the model predicted values. It is said to be used for absolute
error representations.
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RMSE =

√
∑m

i=1(yi − ŷi)
2

m
(7)

• MAE: is a simple equation to calculate the regression model evaluation metric, referred
to as the average absolute error between the observations and the predictions. It is
being used to evaluate the dataset residuals’ average.

MAE =
∑m

i=1|yi − ŷi|
m

(8)

3. Experimentation

This section explains the experimentation performed during our study on predicting
the site energy consumption. First, we describe the development environment used to run
the experiments; second, we outline the data used; third, we enumerate the hyperparame-
ters tuned to obtain the high-performant ML methods; and finally, we describe the results
generated by the different ML algorithms.

3.1. Development Environment

The working station used to perform our experimentation, as summarized in Table 1,
consists of a 64 GB (4 × 16 GB) RAM, an Intel Core i-9-9900k (3.60 Hz) processor, and a
NVIDIA GPU RTX 3080 Ti x 4 with a 64 bit Ubuntu 18.04 operating system. The machine
learning methods were built with CUDA version 11.2.0 on TensorFlow version 2.5.0 with
python version 3.8.0.

Table 1. Environmental setup of the workstation.

Components Description

GPU NVIDIA RTX 3080 Ti x 4
CPU Intel Core i-9-9900k (3.60 Hz)
RAM 64 GB (16 GB × 4)

OS Ubuntu 18.04 64 bit
CUDA 11.2.0

TensorFlow 2.5.0
Python 3.8.0

3.2. Dataset

The dataset provided by the Women in Data Science (WiDS) Datathon 2022 [26] was
made of a 75,757 sample set of continuous, discrete, and categorical features. As described
in the preprocessing, our dataset was highly skewed and had to be removed by removing
the outliers, as shown in Figure 2, and then normalized using the min-max method. Figure 3
shows the data distribution for site energy consumption with respect to the building classes
grouped as commercial and residential buildings.

In this article, we performed a k-fold cross-validation mechanism (with k = 10) to
generalize the employed ML methods. As shown in Figure 4, the sensors’ collected data
from the building were shuffled and then split into the training and the test set; then,
the training set was used for training and validation purposes. Throughout the k-fold
cross-validation processes, the training set was subdivided into 10 subsamples. Throughout
each iteration, 9 of the 10 subsamples were utilized as training datasets for model-fitting
purposes while the remaining subsample served as a validation set. At the end of the 10th
round, the final score was computed by averaging the scores from the previous k rounds.
This mechanism has allowed us to evaluate the capability of the algorithms while trying
to mitigate overfitting and obtain a less biased evaluation. As described in the previous
section, the Grid_Search algorithm was performed on the different ML to find the most
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prevalent hyperparameters. The separated test set that the model had never seen was used
to evaluate the model’s generalization performance.
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3.3. Hyperparameter Tuning

We used the Grid_Search method during our experiments to find the best possible
combination of hyperparameters and obtain models with the lowest prediction error rates.
Table 2 displays the best values obtained after GridSearch. As mentioned in the dataset
section, our dataset was split in an 80:20 ratio for training and testing, respectively. The
80% training ratio was further divided and used to perform 10-fold cross-validation during
which the hyperparameters were optimized.

3.4. Results

MAE and RMSE were used as indicators to illustrate the robustness of the various
investigated ML methods. Figure 5 displays the k-fold (with k = 10 in our case) cross-
validation results of SVM, RF, GBDT, and DT. In Figure 5a, the MAE of SVM, RF, GBDT, and
DT range from 14.26 to 21.45, with RF having the lowest error rate and SVM the highest one.
Similarly, when considering RMSE (Figure 5b), the various methods’ error rates ranged
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from 20.02 to 27.76. For both RMSE and MAE, it can be noticed that RF and GBDT have
close to similar performance results.

Table 2. Hyperparameter tuning of the different models used.

Models Hyperparameters Description Values

RF

N_estimator # Of DT that will constitute the forest 635
Max_feature # Of features in each tree auto
Max_depth Max depth of each DT 150

Min_sample_leaf # Of required samples at leaf node 1

DT

Max_depth 5
Max_feature Auto

Min_samples_leaf 2
Max_leaf_nodes Identical to RF and GBDT 40

Min_weight_fraction_leaf Fraction of samples’ sum of weight required at leaf node 0.1
Splitter Split strategy for each node random

GBDT

Max_depth 40
N_estimators 142
Max_features Identical to parameters of RF and DT auto

Min_sample_leaf 63
Subsample Fraction of sample sets used in fitting each tree learner 0.65

Learning_rate Rate at which each learning tree contribute 0.05

SVM

Kernel Type of kernel used in the algorithm rbf
C Weight importance for the training data 1.0

Gamma Factor controlling single point distance of the influence 0.4
epsilon Margin of error that can be tolerated 0.2

“#” is used to refer to “Number”.

Throughout the 10-fold operations, the error rates generated from the most optimal
model (RF) were predominantly lower than the SVM and DT methods, while comparably
similar to the GBDT. The utilized ML model’s statistical performance characteristics in
terms of MAE and RMSE are shown in Table 3.

Table 3. Results of the various machine learning algorithms on the training set.

Models MAE RMSE

DT 20.61 26.87
GBDT 14.94 20.88

RF 14.63 20.54
SVM 17.25 23.52

The results mentioned above were obtained with the help of data normalization and a
proper feature selection (Pearson correlation) that allowed the models to quickly learn the
hidden pattern present in the selected features while predicting the targeted energy value.
Table 4 displays a feature selection-wise comparative analytical result from the 10-fold
cross-validation of the four ML methods in terms of MAE and RMSE. Regardless of the
feature selection used, the RF is revealed to be the most performant model. However, the
models’ performances greatly varied according to the feature selection methods. These
results further illustrate the importance of understanding the experimented-on data and
preprocessing mechanism in ML-related prediction tasks.
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Table 4. Comparative results of the four ML algorithms based on the feature selection technique used.

Pearson Correlation ANOVA

Models MAE RMSE MAE RMSE

DT 20.61 26.87 21.25 27.21

GBDT 14.94 20.88 20.29 26.27

RF 14.63 20.54 21.75 28.27

SVM 17.25 23.52 23.23 29.02

Testing was performed on the last chunk of the kept-aside sample (test set) to ensure
the proper generalization of our ML models and to check for overfitting. The generated
error rates had satisfactory results, as listed in Table 5. Like the training stage, the RF



Sensors 2023, 23, 82 10 of 12

generated the lowest MAE rate of 14.91, followed by the GBDT with 15.12. Given the nature
of their architecture, these two algorithms displayed very similar performances. In contrast,
both SVM and DT performed the poorest among the four ML methods, with DT yielding
the highest error rate of 20.52 and 26.80 for MAE and RMSE, respectively. For each of the
four methods, the resulting error rate varied between 14.91 and 20.52 for MAE and from
20.84 to 26.80 for RMSE.

Table 5. Results of the various machine learning algorithms on test set.

Models MAE RMSE

DT 20.52 26.80
GBDT 15.12 21.10

RF 14.91 20.84
SVM 17.30 23.51

4. Discussion

During this study, we experimented with four ML algorithms to find the most optimal
method for predicting buildings’ energy utilization from data publicly made available by
the Women in Data Science (WiDS) Datathon 2022 [26]. The performance of the methods
was evaluated by computing their MAE and RMSE. The evaluated performance outcomes
revealed that all four models could be suitable for the prediction. Nevertheless, both the
RF and GBDT statistical analyses confirmed their predominance over SVM and DT with
SVM performing poorly, yielding the highest error rate. The RF algorithm, characterized by
its ability to effectively avoid overfitting while having a low learning time with a parallel
learning pattern, achieved the lowest error rate when compared to the other algorithms.

The results obtained in this study highlights the importance of data preprocessing,
specifically outlier removal and normalization. As described in Section 3.4 (Results), the
application of data normalization unveiled its utility in facilitating the model learning
process [34], thereby considerably reducing the error rate of the various models, conse-
quently leading to a model with better performance. Simultaneously, the results obtained
from this study support the importance of feature selection, confirming that using proper
feature selection methods could help in identifying the subset of features allowing the ML
algorithms to capture distinctive aspects of the building’s characteristics [35] to effectively
predict energy consumption.

For future work directions, we intend to extend our experimentation by adding
more machine learning algorithms and the neural network model, using more feature
selection methods, and performing an extensive comparative analysis. Furthermore, we
intend to evaluate the obtained model on similar datasets; the site energy’s utilization
prediction model will be implemented as an API and made publicly available based on the
attained results.

5. Conclusions

An accurate prediction of energy usage is challenging (considering the large set of
features) and is an important task to be performed. Therefore, this study attempts to model
energy consumption prediction by investigating four machine learning algorithms together
with data preprocessing (outlier removal, feature selection, and data normalization) and
compares their performance to determine their applicability for predicting site energy
consumption. The most efficient algorithm is selected based on the performance metrics:
MAE and RMSE. After appropriate preprocessing of data, the RF outperformed the other
methods with the following performances: 14.91 and 20.84 for MAE and RMSE, respec-
tively. During our study, data preprocessing (outlier removal, feature selection, and data
normalization) was revealed to be crucial and described in the Results section, whereby the
error rate was considerably reduced and the model robustness enforced. Our model’s low
error rates allowed us to make relatively accurate forecasting of the site’s energy usage, thus
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providing recommendations that directly minimize the consumption rate and indirectly
help reduce climate change.
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